首页> 外文OA文献 >EEG Based Eye State Classification using Deep Belief Network and Stacked AutoEncoder
【2h】

EEG Based Eye State Classification using Deep Belief Network and Stacked AutoEncoder

机译:基于深度信念网络和堆叠式自动编码器的基于EEG的眼神状态分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A Brain-Computer Interface (BCI) provides an alternative communication interface between the human brain and a computer. The Electroencephalogram (EEG) signals are acquired, processed and machine learning algorithms are further applied to extract useful information. During EEG acquisition, artifacts are induced due to involuntary eye movements or eye blink, casting adverse effects on system performance. The aim of this research is to predict eye states from EEG signals using Deep learning architectures and present improved classifier models. Recent studies reflect that Deep Neural Networks are trending state of the art Machine learning approaches. Therefore, the current work presents the implementation of Deep Belief Network (DBN) and Stacked AutoEncoders (SAE) as Classifiers with encouraging performance accuracy. One of the designed SAE models outperforms the performance of DBN and the models presented in existing research by an impressive error rate of 1.1% on the test set bearing accuracy of 98.9%. The findings in this study, may provide a contribution towards the state of the art performance on the problem of EEG eye state classification.
机译:脑机接口(BCI)提供了人脑与计算机之间的替代通信接口。采集,处理脑电图(EEG)信号,并进一步应用机器学习算法来提取有用的信息。在脑电图采集期间,由于不随意的眼球运动或眨眼而导致伪像,从而对系统性能产生不利影响。这项研究的目的是使用深度学习架构从脑电信号预测眼睛状态,并提出改进的分类器模型。最近的研究表明,深度神经网络是机器学习方法的最新趋势。因此,当前的工作提出了深层信任网络(DBN)和堆叠式自动编码器(SAE)作为分类器的实现,并具有令人鼓舞的性能准确性。其中一种经设计的SAE模型优于DBN的性能,而现有研究中提出的模型则在测试集轴承精度为98.9%的情况下达到了令人印象深刻的1.1%的错误率。这项研究中的发现,可能会为脑电图眼状态分类问题方面的最新技术水平做出贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号